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empirically show that the magnitude of the log-induced distortions is substantial. Depending on the definition 
of accurate log measures, we find that around 60-80% of four-digit industry results are prone to 
mismeasurement. We further find significant correlations of this mismeasurement with commonly deployed 
industry characteristics, indicating, among other things, that less competitive industries are more prone to log 
distortions. Evidently, these correlations also affect the validity of studies that investigate the role of industry 
characteristics in productivity growth. 
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Abstract

This paper argues that the typical practice of performing growth decompositions
based on log-transformed productivity values induces fallacious conclusions: using
logs may lead to an inaccurate aggregate growth rate, an inaccurate description
of the microsources of aggregate growth, or both. We identify the mathematical
sources of this log-induced fallacy in decomposition and analytically demonstrate
the questionable reliability of log results. Using firm-level data from the French
manufacturing sector during the 2009-2018 period, we empirically show that the
magnitude of the log-induced distortions is substantial. Depending on the defini-
tion of accurate log measures, we find that around 60-80% of four-digit industry
results are prone to mismeasurement. We further find significant correlations of
this mismeasurement with commonly deployed industry characteristics, indicating,
among other things, that less competitive industries are more prone to log distor-
tions. Evidently, these correlations also affect the validity of studies that investigate
the role of industry characteristics in productivity growth.
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1 Introduction

This paper questions the typical practice of performing growth decompositions based on

the log-transformed values of productivity. We argue that representing firm-level produc-

tivity in logs may lead to an inaccurate aggregate growth rate, an inaccurate description

of the microsources of aggregate growth, or both. These three cases of potential miscon-

ceptions are what we refer to as the fallacy in productivity decomposition. Therefore,

policy recommendations stemming from log-based decomposition exercises may prove

inappropriate.

Productivity decomposition methods are useful tools to shed light on the underly-

ing causes of aggregate productivity movements. The most commonly used shift-share

decomposition methods include those proposed by Griliches and Regev (1995), Foster,

Haltiwanger and Krizan (2001) and Melitz and Polanec (2015). Whereas the former

two are time-series approaches based on the seminal contribution by Baily, Hulten and

Campbell (1992), the latter is based on the cross-sectional methodology by Olley and

Pakes (1996). Despite their technical differences, they all use the weighted average of

firm-level productivity and decompose aggregate productivity growth according to its

underlying microsources; for firm-level analyses, these include (i) productivity changes

at the individual firm level (within-firm effect), (ii) shifts in market shares between firms

(between-firm effect)1, (iii) entries of new firms, and (iv) exits of incumbents.

The use of these methods differs in various ways. Some studies use labor productivity,

while others use total factor productivity; some use inputs, while others choose output

shares as weights (see e.g., Fagerberg, 2000; Foster et al., 2001; Melitz and Polanec,

2015; Decker et al., 2017). Discrepancies may also arise due to the chosen length of the

period analyzed, as a decomposition of shorter periods typically yields larger within-firm

contributions (Brown et al., 2018). A further methodological difference is whether to

measure firm-level productivity in levels or in logs, with the typical practice being the

use of logs (see e.g., Van Biesebroeck, 2008; Melitz and Polanec, 2015).2 However, as we

argue in this paper, representing firm-level productivity in logs entails the risk of severe

1Foster et al. (2001) apply a third component for incumbent firms, which consists of an interaction
between the first two components (cross-firm effect).

2According to our literature review, no less than two-thirds of the identified firm-level studies use
logs when decomposing labor productivity. See Table A1.
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misinterpretations regarding aggregate productivity growth as well as its decomposed

elements. We identify three underlying sources: (i) the log approximation error, as a

consequence of the logarithm’s concavity; (ii) the reference deviation, arising from a

different reference assumption implicit in log differences; and (iii), the mean deviation,

caused by the difference in the deployed benchmark productivity.

In our analysis, we follow the standard textbook definition of aggregate productivity

growth which reads as follows

Φ̂ =
Φ2 − Φ1

Φ1

, (1)

where Φ1 and Φ2 denote aggregate productivity in two successive time periods. Aggregate

productivity is simply the sum of firm-level output over the sum of firm-level input(s).

This definition is the most conventional measure of aggregate productivity, and we take

Φ̂ as being the most accurate measure of aggregate productivity growth. As mentioned,

however, many studies choose to measure firm-level productivity in logs which inevitably

implies a deviation from the above definition.

At the outset, we want to emphasize that the composition of an aggregate can natu-

rally be freely defined by the researcher. Hence, when aggregate productivity is defined as

a share-weighted aggregate of log firm-level productivity, the mathematics are certainly

consistent. However, from an economic viewpoint, productivity is essentially a measure of

efficiency, that is, the relationship between output and input(s). Even though the log of

firm-level output over inputs might still be a reasonable measure of firm-level efficiency,

the use of a log aggregate for an industry’s or a country’s aggregate efficiency is question-

able, as it lacks a clear link to the relationship between aggregate output and input(s)

(see e.g., Melitz and Polanec, 2015). Moreover, productivity components based on log

measures, even if reported in log points, are frequently interpreted as percent changes

in the literature.3 This reinforces our perception that logs are in fact considered an

approximation to the representation of growth rates in percent, that is, based on levels.

In our argument, we aim in a similar direction as Dias and Marques (2021a) who shed

light on the potential misconceptions in productivity decompositions caused by the fact

3See Van Biesebroeck (2005); Foster et al. (2006); Haskel and Sadun (2009) or Melitz and Polanec
(2015) who substantiate the widespread use of logs to approximate productivity growth rates; the latter,
for instance, explicitly remarks that “... [a]ll productivity changes are reported as log percents (or log
points) – and can thus be interpreted as percentage point changes” (Melitz and Polanec, 2015, p. 371).
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that the aggregation of logs leads to a geometric instead of an arithmetic mean.4 With

respect to their contribution, we believe our work to contribute in several ways. First,

instead of the aggregate perspective, we analyze the impact of logs from the perspec-

tive of an individual firm’s contribution to aggregate growth. Adopting the firm-level

perspective reveals that the discrepancy between level and log results for individual pro-

ductivity components is not only caused by the different types of means but that it can

be traced back to three sources of distortions mentioned above, namely, the log approx-

imation error, the reference deviation, and the mean deviation. The separation of the

three log distortions provides a straightforward analytical framework to determine the

circumstances under which firm-level contributions are over- or underestimated by logs.

Second, we extend the findings by Dias and Marques, who use a modified version of the

Melitz and Polanec (2015) decomposition method, by setting out the log distortions in

the widely applied decomposition methods by Foster et al. (2001) (henceforth: FHK).

We further show that our findings also hold for the method by Griliches and Regev (1995)

and the decomposition (in its original form) by Melitz and Polanec (2015). Third, we

show how the log distortions differ between studies conducted for the average industry

and for individual industries, revealing that the average industry is less affected by log

distortions. As most studies typically investigate the average industry, these findings

may be of particular interest. Fourth, we quantify the fallacy in decomposition by ex-

ploiting our data on four-digit industries and thereby provide striking evidence for the

scope of our findings. Fifth, we document how log distortions relate to certain industry

characteristics, revealing, in particular, that the lack of competition and a high degree

of industry openness reinforce log distortions. We believe we thereby take an important

step to evaluate the extent to which past and future studies of industry dynamics may

be affected by the use of logs and how they compare.

The remainder of the paper is structured as follows. In Section 2, we define and

formalize the first two distortions, namely, the log approximation error and the reference

deviation. In Section 3, we discuss the use of logs in the productivity components of

the FHK decomposition method, which reveals the mean deviation as the third log-

induced distortion. Section 4 shows the magnitude of the log distortions using firm-

4The fact that logs lead to a geometric mean has previously also been pointed out by, for example,
Van Biesebroeck (2008) or Brown et al. (2018).
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level data of the French manufacturing sector. In Section 5, we quantify the fallacy

in decomposition and address how the log-induced discrepancies correlate with certain

industry characteristics. Section 6 concludes.

2 Log approximation error and reference deviation

It is common practice in productivity decompositions to represent firm-level productivity

in logs. The main motive lies in the linearization of the decomposition exercise (Van Biese-

broeck, 2008), achieved by using a log difference as an approximation to a productivity

growth rate:

ϕi2 − ϕi1
ϕi1

≈ ln(ϕi2)− ln(ϕi1) (2)

where ϕi1 and ϕi2 denote productivity levels of firm i in two successive periods. Due

to the concavity of the logarithmic function, logged values underestimate productivity

growth, i.e., (ϕi2 − ϕi1)/ϕi1 − (ln(ϕi2) − ln(ϕi1)) ≥ 0. It is this well-known deviation

between the level growth rate in the form of a ratio and the log difference, which we refer

to as the log approximation error.

Proposition 1 The use of logs introduces a log approximation error, that is, a systematic

underestimation of productivity growth rates.

It is usually argued that the occurring approximation error can be kept within reason-

able limits as long as the growth rates fluctuate within a range of approximately ±10%.

However, it is not uncommon for individual firms to experience a change in productivity

beyond such values. Moreover, while the positive and negative growth rates of firms

may partly balance out in the aggregate, the log approximation errors will not because

they are consistently positive, independent of whether a firm increases or decreases its

productivity. In addition, because each decomposition component reflects a weighted

sum and involves a different set of weights, the implied log-approximation error is scaled

accordingly, thus making predictions about the magnitude of the error illusive.

Aside from the log approximation error, there is a further discrepancy between levels

and logs which appears when aggregating firm-level growth rates. In contrast to levels

where absolute changes in firm-level productivity are measured against some reference
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productivity – usually the aggregate productivity of the previous period, as shown in

eq. (1) – the reference of a productivity growth rate calculated with log-transformed

values is implicit in the firm-individual log difference. Hence, we have to address what

we call the reference deviation. For each firm-specific productivity growth rate, the

reference productivity will differ from the unique reference productivity applied in the

case of levels.

Proposition 2 Aggregating log differences as a proxy for growth rates induces a reference

deviation arising from the idiosyncratic reference productivity when using logs in contrast

to a single reference productivity when calculating growth rates in levels.

To illustrate the two so far mentioned log distortions, we start by revisiting the defini-

tion we gave in the introduction, defining aggregate productivity as the ratio of aggregate

output to aggregate input(s). In the case of aggregate labor productivity, this reads as:5

Φt =

∑
Yit∑
Lit

(3)

where Yit denotes output (e.g., value-added) and Lit input (e.g., working hours) of firm

i at time t. Following the decomposition method by Foster et al. (2001), aggregate pro-

ductivity is calculated as the share-weighted mean of firm-level productivity; calculated

in levels, this implies:

Φ̂lev =
(∑

si2 · ϕi2 −
∑

si1 · ϕi1
) 1

Φ1

(4)

where ϕi1 and ϕi2 denote productivity levels of firm i in two successive periods, and si1 and

si2 indicate share weights. To ensure that the aggregation of firm-level data corresponds

to the industry aggregate as defined in eq. (3), we use input shares for weighing individual

firm productivity, i.e., sit = Lit∑
Ljt

.6 Note that each firm’s absolute productivity growth

is divided by the reference productivity Φ1, which renders the aggregate productivity

5For the sake of simplicity, we confine our investigation to labor productivity as a productivity
measure and will not address total factor productivity (TFP) because its measurement poses additional
challenges (Dosi et al., 2015; Dosi and Grazzi, 2006), although it does not hurt the general statements
in this paper regarding the causes of log distortions.

6In using input shares, we follow the denominator rule in share-weighting aggregation of Färe and
Karagiannis (2017), who show that, when aggregating, consistent results are achieved only by using the
denominator of the productivity measure as weights.

6



growth rate Φ̂lev.
7

If, instead, firm-level productivity is measured in logs, the share-weighted industry

aggregate is defined as Φt,log =
∑
sit · lnϕit (see e.g., Van Biesebroeck, 2008; Bartelsman

et al., 2013; Melitz and Polanec, 2015; Decker et al., 2017). As the difference between

two log aggregates corresponds to a percentage change, aggregate productivity growth in

logs can be expressed as follows:

Φ̂log =
∑

si2 · lnϕi2 −
∑

si1 · lnϕi1 (5)

which is equivalent to the log difference of two geometric means:

Φ̂log = ln
∏

ϕsi2i2 − ln
∏

ϕsi1i1 (6)

In other words, instead of a growth rate between two share-weighted arithmetic means,

logs approximate a growth rate between two share-weighted geometric means (Van Biese-

broeck, 2008; Brown et al., 2018; Dias and Marques, 2021a). This approach inevitably

affects the computation of productivity growth because a geometric mean is more sensi-

tive to smaller numbers than to larger numbers, which mitigates the effect of high values

while reinforcing the impact of low values. Moreover, as Jensen’s inequality proves, the

(weighted) geometric mean is always smaller than the (weighted) arithmetic mean unless

all numbers constituting the means are equal (Casella and Berger, 2002).

However, this does not imply that the growth rate between two arithmetic means

must also be larger, as this is contingent on the composition of the respective means

and their changes over time, as shown by Dias and Marques (2021a). Put differently, it

depends on the development of each firm’s productivity and input share while considering

the individual firm’s positioning within the industry’s initial productivity distribution.

To further elaborate on this point, we adopt the perspective of the individual firm. From

equations (4) and (5), we can extract the individual firm productivity contribution Ci to

aggregate productivity growth measured in levels and logs, respectively:

Ci,lev = (si2ϕi2 − si1ϕi1) · 1

Φ1

(7)

7In Appendix D, we indicate how our findings apply when the time average productivity, Φ, is used
as a reference, as, for instance, that by Melitz and Polanec (2015).
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Ci,log = si2 · lnϕi2 − si1 · lnϕi1 (8)

The comparison of Ci,lev and Ci,log reveals how the computation of firm-level con-

tributions to aggregate growth is affected by the two log distortions we identified in

propositions (1) and (2). The log approximation error is visible in the ratio in eq. (7)

as opposed to the log difference in eq. (8), while the reference deviation shows in the

different reference productivities, which is the aggregate productivity, Φ1, in eq. (7) and

the firm’s initial productivity, ϕi1, in eq. (8).

Hence, as mentioned above, a log difference embodies its individual reference pro-

ductivity in the respective subtrahend. In eq. (8), the subtrahend is ln(ϕi1), implying

that the log difference uses each firm’s initial productivity ϕi1 as a reference productiv-

ity.8 Consequently, individual firms’ productivity growth rates measured in logs can have

both a higher or a lower contribution to aggregate growth compared to the level results,

depending on the positioning of each firms’ initial productivity, ϕi1, relative to aggregate

productivity, Φ1. Therefore, the reference deviation plays a crucial role in determining

whether a firm’s contribution to aggregate growth is underestimated, i.e., Ci,lev > Ci,log,

or overestimated, i.e., Ci,lev < Ci,log, by logs.9

Following this line of reasoning, when aggregating firm contributions to aggregate

productivity growth based on logs, the resulting aggregate growth rate is susceptible to

bias. It is the industry structure and its change over time that determines the extent to

which productivity growth contributions are under- or overestimated, which raises doubts

about the reliability and comparability of productivity measures based on logs.

In the following section, we flesh out our propositions by decomposing aggregate

productivity growth according to the FHK method. For each productivity component in

the FHK method, we propose a separation of the different log distortions, which provides

8Note that we draw this analogy based on the approach that a log difference between ϕi2 and ϕi1

approximates the ratio of the absolute difference (ϕi2 − ϕi1) and the initial productivity ϕi1, while we
isolate the inaccuracy caused by the log approximation in the approximation error. Hence, our analogy
is not opposed to Törnqvist et al. (1985), who stated that a log difference equals the ratio of the absolute
difference (ϕi2 − ϕi1) and the logarithmic mean L(ϕi1, ϕi2), with L(ϕi1, ϕi2) = (ϕi2 − ϕi1)/ ln(ϕi2/ϕi1)
and (ϕi1ϕi2)1/2 < L(ϕi1, ϕi2) < (ϕi1 + ϕi2)/2 for ϕi1 6= ϕi2.

9To illustrate, let us assume two firms with constant market shares sit = 10% for i={1,2}, productiv-
ity levels ϕ11 = 50 and ϕ21 = 150, and an initial aggregate productivity Φ1 = 100. Suppose both firms
increase their productivity by 10%. With logs, the contribution of both firms to aggregate productivity
growth will be the same, namely, 0.1 · ln(1.1) ≈ 0.953%. Calculated in levels, the impact of firm 1 will
be smaller than the impact of firm 2, namely, 0.1 · 55−50

100 = 0.5% for firm 1 and 0.1 · 165−150
100 = 1.5% for

firm 2. Hence, logs overestimate the impact of firm 1 and underestimate the impact of firm 2.
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a straightforward analytical approach to determine the circumstances under which firms’

productivity contributions are over- or underestimated by logs.

3 Decomposing the log distortions in the FHK decomposition

The FHK decomposition distinguishes three groups of firms, i.e., surviving (S), entering

(N), and exiting firms (X). The contribution of surviving firms is further broken down

into three subcomponents, which they label the within-firm effect (WFE), the between-

firm effect (BFE), and the cross-firm effect (CFE). Expressed in levels, the decomposition

reads as follows:

Φ̂lev =
∑
i∈S

1

Φ1

· si1 · 4ϕi︸ ︷︷ ︸
WFEi,lev

+
∑
i∈S

1

Φ1

· 4si · (ϕi1 − Φ1)︸ ︷︷ ︸
BFEi,lev

+
∑
i∈S

1

Φ1

· 4si · 4ϕi︸ ︷︷ ︸
CFEi,lev

+
∑
i∈N

1

Φ1

· si2 · (ϕi2 − Φ1)︸ ︷︷ ︸
Ni,lev

+
∑
i∈X

1

Φ1

· si1 · (Φ1 − ϕi1)︸ ︷︷ ︸
Xi,lev

(9)

In logs, the individual productivity components are expressed as follows:

Φ̂log =
∑
i∈S

si1 · 4 lnϕi︸ ︷︷ ︸
WFEi,log

+
∑
i∈S

4si · (lnϕi1 − Φ1,log)︸ ︷︷ ︸
BFEi,log

+
∑
i∈S

4si · 4 lnϕi︸ ︷︷ ︸
CFEi,log

+
∑
i∈N

si2 · (lnϕi2 − Φ1,log)︸ ︷︷ ︸
Ni,log

+
∑
i∈X

si1 · (Φ1,log − lnϕi1)︸ ︷︷ ︸
Xi,log

(10)

Note that in the BFE component as well as in the components of entering and exiting

firms, firm-level productivity is set in relation to aggregate productivity as a benchmark,

which is Φ1 for levels and Φ1,log for logs. As noted in Section 2, we can rewrite the log

aggregate as Φ1,log =
∑
si1 lnϕi1 = ln

∏
ϕsi1i1 . We will denote the geometric mean of

firm-level productivity as Π1, i.e., Φ1,log = ln
∏
ϕsi1i1 = ln Π1, distinguishing it from the

arithmetic mean used by levels, Φ1. Self-evidently, the discrepancy in means will induce
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a further distortion in the computation of productivity growth, which we term mean

deviation.

Proposition 3 Logs introduce a mean deviation in the between-firm effect and in the

components of entering and exiting firms, as logs use a geometric mean instead of an

arithmetic mean as the benchmark productivity.

As this proposition emphasizes, the mean deviation will only surface in the BFE and

in the components of entering and exiting firms. The impact of the mean deviation on

the discrepancy between the log and the level aggregate growth rate, however, will be

zero because market shares sum to one in each period, i.e.,
∑
si1 =

∑
si2 = 1 (see e.g.,

Melitz and Polanec, 2015). Additionally, note that in a balanced panel, the impact of

the mean deviation on the aggregate between-firm effect is always zero (see Section 3.2)

since the sum of changes in shares is zero, i.e.,
∑

i∈S4si = 0 (see e.g., Baily et al., 2001).

The following sections set out the extent to which the three identified log distortions

affect the individual components within the FHK decomposition method, by which we

extend the analysis provided by Dias and Marques (2021a). While sharing similarities

in the decomposition of the log distortions in the WFE and the CFE, we also provide a

decomposition for the three remaining components.

3.1 Log distortions in the within-firm effect

The within-firm effect (WFE) depicts the part of aggregate growth driven by productivity

improvements at the individual firm level, weighted by each firm’s initial input share.

Comparing the WFE from equations (9) and (10), and building upon our findings in

Section 2, the level and log results concerning the WFE diverge as a consequence of a

combination between the log approximation error and the reference deviation:

εi,W = WFEi,lev −WFEi,log

= si1

(
4ϕi
Φ1

−4 lnϕi

)

= si1

(
4ϕi
ϕi1
−4 lnϕi

)
︸ ︷︷ ︸

εi,W,appr

+ si1

(
4ϕi
Φ1

− 4ϕi
ϕi1

)
︸ ︷︷ ︸

εi,W,ref

(11)
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As shown in eq. (11), a further decomposition of the difference between the WFE in

levels and logs separates the approximation error (εi,W,appr) from the reference deviation

(εi,W,ref ) – the latter arising from the alternative use in reference productivities.

Since changes in shares are ignored in the WFE, the input share si1 simply works as

a scaling factor of the distortions. The log approximation error (εi,W,appr) is increasing in

|∆ϕi|. Due to the concavity of the logarithm and the fact that input shares must always

be positive, si1 > 0, the approximation error εi,W,appr is always nonnegative (εi,W,appr ≥ 0).

Hence, the log approximation error introduces a systematic underestimation in the WFE

component. The sign and magnitude of the reference deviation (εi,W,ref ) depend on the

position of the firm’s productivity and its development within the industry’s productivity

distribution, i.e., on the relationship of ϕi1 and Φ1 and on the directional change in 4ϕi.

εi,W,ref is positive, if (ϕi1 > Φ1 ∧ 4ϕi > 0) ∨ (ϕi1 < Φ1 ∧ 4ϕi < 0), and negative if

(ϕi1 > Φ1 ∧4ϕi < 0) ∨ (ϕi1 < Φ1 ∧4ϕi > 0).

Summarizing the log distortions in the WFE, the reference deviation will add to the

consistently positive log approximation error, compensate or even overcompensate the

error, if εi,W,appr + εi,W,ref < 0. As noted by Dias and Marques (2021a), the described

tendencies in the two error terms anticipate a generally positive log distortion in the

WFE. This is also reflected in our empirical findings (Section 4).

3.2 Log distortions in the between-firm effect

The between-firm effect (BFE) depicts input share fluctuations for the analysis of real-

location effects within the industry. Although the BFE holds the productivity measure

constant focusing on changes in shares, we can make use of the fact that, from a math-

ematical perspective, normalizing the impact of the BFE using the weighted arithmetic

mean Φ1 and the weighted geometric mean Π1, respectively, corresponds to the mathe-

matical equivalent of a productivity growth rate (see equations 9 and 10). Due to this

analogy of a growth rate, we can decompose the log distortions in the BFE according to

propositions (1) to (3):

11



εi,B = BFEi,lev −BFEi,log

= 4si

(
ϕi1 − Φ1

Φ1

− (lnϕi1 − ln Π1)

)

= 4si

(
ϕi1 − Π1

Π1

− (lnϕi1 − ln Π1)

)
︸ ︷︷ ︸

εi,B,appr

+4si

(
ϕi1 − Π1

Φ1

− ϕi1 − Π1

Π1

)
︸ ︷︷ ︸

εi,B,ref

+4si

(
Π1 − Φ1

Φ1

)
︸ ︷︷ ︸

εi,B,4mean

(12)

In eq. (12), we define the approximation error in the BFE (εi,B,appr) as the discrep-

ancy between the log difference of lnϕi1 and ln Π1 and the ratio of (ϕi1 −Π1)/Π1, which

is approximated by this log difference. In line with Proposition (2), the reference produc-

tivity embodied in the log difference is Π1, while the reference productivity deployed by

the BFE in levels is Φ1. This introduces the reference deviation (εi,B,ref ). The remaining

discrepancy is rooted in the mean deviation (εi,B,4mean). In levels, firm productivity is

measured against the arithmetic mean; for logs, it is compared to the geometric mean.

The magnitude of εi,B,appr increases with the difference (ϕi1 − Π1) and is simultaneously

scaled by the change of the firm’s input share4si. In line with Proposition (1), εi,B,appr is

positive for 4si > 0 and negative for 4si < 0. The impact of εi,B,ref depends on the sign

and magnitude of the change in input share4si and the relative position of the individual

firm’s productivity ϕi1 to the geometric mean Π1. Following Jensen’s inequality, we as-

sume that Φ1 > Π1, so that εi,B,ref is positive if (ϕi1 > Π1∧4si < 0)∨(ϕi1 < Π1∧4si > 0)

and negative if (ϕi1 > Π1 ∧4si > 0) ∨ (ϕi1 < Π1 ∧4si < 0).

The size and magnitude of εi,B,4mean depend on the magnitude of the difference be-

tween the two means, (Π1 − Φ1), and the change in input share ∆si. Provided that

Φ1 > Π1, the sign of the distortion will take the opposite sign of the change in input

share 4si, scaled by its absolute magnitude. In other words, for firms that increase their

market share, the mean deviation induces a negative distortion in the BFE and vice versa.

In the aggregate, the direction of the distortion caused by the mean deviation depends on

the changes in market shares of surviving, exiting and entering firms. It will be positive

if the sum of changes in shares is negative, i.e.,
∑

i∈S4si < 0, implying that the market

share of surviving firms has decreased.
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In sum, each of the three distortions in the BFE can be either positive or negative, both

at the individual firm level and at the aggregate level. However, note that the aggregate

impact of the mean deviation will occur only in an unbalanced panel. In a balanced

panel, the aggregate impact of the mean deviation is always zero, as (Π1 − Φ1)/Φ1 is

constant and
∑

i∈S4si = 0.

3.3 Log distortions in the cross-firm effect

The cross-firm effect (CFE) can be seen as an interaction between the two previous

components, i.e., between the WFE and the BFE. From equations (9) and (10), we can

derive the log distortions in the CFE:

εi,C = CFEi,lev − CFEi,log

= 4si

(
4ϕi
Φ1

−4 lnϕi

)

= 4si

(
4ϕi
ϕi1
−4 lnϕi

)
︸ ︷︷ ︸

εi,C,appr

+4si

(
4ϕi
Φ1

− 4ϕi
ϕi1

)
︸ ︷︷ ︸

εi,C,ref

(13)

Again, we detect a log approximation error (εi,C,appr) that increases with |∆ϕi|; it is

weighed and scaled by 4si and follows this scaling factor in sign and magnitude. The

impact of the reference deviation (εi,C,ref ) depends on the development of4si, the relative

position of ϕi1 compared to Φ1, and 4ϕi. This variety of influencing factors leads to a

large variety of potential outcomes concerning an over- or underestimation induced by

logs.10

Overall, both the approximation error and the reference deviation may induce a posi-

tive or a negative bias in the CFE. It is also conceivable that the distortions balance out

in the aggregate.

10For completeness: εi,C,ref is positive for (ϕi1 > Φ1 ∧ 4si > 0 ∧ 4ϕi > 0)or(ϕi1 > Φ1 ∧ 4si <
0 ∧4ϕi < 0)or(ϕi1 < Φ1 ∧4si > 0 ∧4ϕi < 0)or(ϕi1 < Φ1 ∧4si < 0 ∧4ϕi > 0) and it is negative for
all complementary cases.
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3.4 Log distortions in entry and exit

The contribution of entering or exiting firms to aggregate productivity growth can be

positive or negative. It depends on these firms’ relative position to an industry’s bench-

mark productivity, which, in the FHK decomposition, is the industry aggregate Φ1 for

levels and Π1 for logs. Analogous to the BFE, we can again decompose the log-induced

distortion to isolate three different distortions in both the entry and exit components: the

log approximation error (εi,·,appr), the reference deviation (εi,·,ref ), and the mean deviation

(εi,·,∆mean).

For entering firms, this leads to the following equation:

εi,N = Ni,lev −Ni,log

= si2

(
ϕi2 − Φ1

Φ1

− (lnϕi2 − ln Π1)

)

= si2

(
ϕi2 − Π1

Π1

− (lnϕi2 − ln Π1)

)
︸ ︷︷ ︸

εi,N,appr

+ si2

(
ϕi2 − Π1

Φ1

− ϕi2 − Π1

Π1

)
︸ ︷︷ ︸

εi,N,ref

+ si2

(
Π1 − Φ1

Φ1

)
︸ ︷︷ ︸

εi,N,4mean

(14)

The more distant the entering firm’s productivity level ϕi2 from the benchmark pro-

ductivity level Π1 is, the greater the log approximation error (εi,N,appr). In line with

Proposition (1) and the fact that si2 can take only positive values, εi,N,appr is always non-

negative. The distortion caused by the reference deviation (εi,N,ref ) is almost identical to

its counterpart in the BFE component, except for its weight. Assuming that Φ1 > Π1,

εi,N,ref will be positive if (ϕi2 − Π1) < 0 and vice versa. The magnitude of the mean

deviation (εi,N,4mean) depends on the input share si2, which scales the difference between

the geometric (Π1) and arithmetic (Φ1) means of productivity. Since the benchmark

productivity for evaluating the contribution of entering firms is smaller for logs than for

levels (Φ1 > Π1), this distortion is always negative.

As is the case in the previous components, it is conceivable that the individual log

distortions in the entry component balance out or induce an over- or underestimation,

which depends on firm and industry characteristics.

In the case of exiting firms, we obtain the following mirror image:

14



εi,X = Xi,lev −Xi,log

= si1

(
Φ1 − ϕi1

Φ1

− (ln Π1 − lnϕi1)

)

= si1

(
(lnϕi1 − ln Π1)− ϕi1 − Φ1

Φ1

)

= si1

(
(lnϕi1 − ln Π1)− ϕi1 − Π1

Π1

)
︸ ︷︷ ︸

εi,X,appr

+ si1

(
ϕi1 − Π1

Π1

− ϕi1 − Π1

Φ1

)
︸ ︷︷ ︸

εi,X,ref

+ si1

(
Φ1 − Π1

Φ1

)
︸ ︷︷ ︸

εi,X,4mean

(15)

The log approximation error in the Exit component (εi,X,appr) is always negative for

exiting firms. The reference deviation (εi,X,ref ) is positive for ϕi1 > Π1 and negative for

ϕi1 < Π1. The mean deviation, (εi,X,4mean) is always positive.

4 Empirical application

4.1 Data

We use firm-level panel data covering the French manufacturing sector for the 2009-18

period. The information comes from annual census data named FARE and covers more

than 3 million companies per year. The data provide information about the firms’ income

statements and balance sheets, from which we retrieved data regarding value-added and

the number of employees. Because we did not observe prices, we used industry-specific

value-added deflators provided by the French statistical office INSEE. For labor, we used

the industry-specific annual number of hours worked per employee (provided by INSEE)

and multiplied it by the number of employees to obtain the total number of hours worked

per company.

We restricted the analysis to manufacturing firms only.11 Our motivation was to per-

form the decompositions on activities that were similar to what is generally documented

in the literature. Moreover, we further restricted our sample to firms with at least 10

employees. Increasing the minimum size of the firm ensures higher data quality, a key

element in growth rate computations. To avoid artificial breaks in the series, we did not

11Table B1 of Appendix B lists the 12 two-digit manufacturing sectors. We excluded the industry of
coke and refined petroleum products (ISIC 19) in our analysis.
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trim observations with fewer than 10 employees on a firm-year basis. Rather, we screened

out firms for which the median number of employees was strictly lower than 10 over the

entire period.

We focused on labor productivity as our efficiency measure, defined as the value-added

to hours worked ratio. We excluded firms reporting a negative value-added. We further

truncated the data by excluding firms with at least one observation in the bottom and top

.5% of the productivity distribution and by discarding firms that experienced suspicious

negative and positive jumps in their efficiency series.12 Applying such restrictions yielded

a sample of approximately 260,000 firm-year observations. Table C1 of Appendix C

reports the corresponding summary statistics.

In our empirical analysis, we followed two perspectives. First, we presented re-

sults for the average manufacturing industry by aggregating industry-level results to a

manufacturing-wide level. Such aggregation exercises have been widely applied in pro-

ductivity analyses with different degrees of detail (see e.g., Baily et al., 1992; Foster et al.,

2001, 2006; Decker et al., 2017; Brown et al., 2018). Second, we investigated the produc-

tivity dynamics of individual industries, with a particular focus on the manufacturing of

chemicals and chemical products (ISIC 20), whose productivity dynamics are well suited

to illustrate the potential impact of log distortions.

Given our sample of firms, we performed the FHK decomposition using, alternatively,

equations (9) and (10) for each industry and for each year. Because the decomposition

exercise necessitates a starting year and an ending year, all results pertained to the period

2010-18, excluding 2009. This method yields a sample of 12 × 9 = 108 decompositions,

allowing us to recover the overall log error εA (εA =
∑

i εi,A = Φ̂lev− Φ̂log) and decompose

it into the error in the within component εW (εW =
∑

i εi,W ), the error in the between

component εB (εB =
∑

i εi,B), the error in the cross-firm effect component εC (εC =∑
i εi,C), the error in the entry component εN (εN =

∑
i εi,N) and the error in the exit

component εX (εX =
∑

i εi,X).

12More precisely, we excluded firms for which we observed a change in labor productivity by a factor
of more than 3 from one year to another.
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4.2 Log distortions in manufacturing

We reported the results for the manufacturing sector by creating a weighted average of

the industry-level results for the 12 industries in our sample. As industry weights, we

used labor input in the form of hours worked, averaged over the beginning and ending

years of the period in which the respective growth rate was measured. The corresponding

decomposition results and log distortions are shown in Table 1.

With regard to aggregate productivity growth, the table reports a distortion εA rang-

ing from −0.64 to 1.36 percentage points. Relative to the productivity contribution in

levels, the distortions ranged from −35% (2010) to 27% (2017). The log distortions in

the aggregate growth rate were not distributed equally among the individual productiv-

ity components. The WFE and the exit and entry components were most affected, while

the BFE and the CFE were subject to smaller distortions. Nonetheless, if expressed in

relative terms, the distortions in the BFE and CFE can also be substantial. In all five

components, growth contributions were neither systematically overestimated nor under-

estimated by the use of logs. The distortions in the WFE ranged from −17% in 2010 to

25% in 2015. In the BFE component, the largest overestimation occurred in 2012 with

−19%, and the largest underestimation occurred in 2011 with 18%. The range in the

distortions in the CFE was from −14% in 2011 to 11% in 2018. The relative discrepancies

were most pronounced with respect to the entry and exit components. For entries, the

discrepancy ranged from −6% (2012) to 766% (2011). For exits, the distortions range

from −239% in 2013 to 51% in 2018.

The evident lack of a systematic over- or underestimation in aggregate growth and in

the components implies that trends in productivity developments may be judged differ-

ently in logs than in levels. For instance, calculated in levels, aggregate growth in 2017

was more than double that of 2010; in logs, it increased by only approximately 43%.

As a further example, while aggregate growth in levels showed a slight increase between

2010 (1.83%) and 2014 (1.99%), logs suggested a slowdown in productivity growth from

2.47% to 1.83%. With respect to individual productivity components, the years 2016 and

2017 provided a very notable example of the potential misconceptions. Whereas with

logs, the contributions of entering and exiting firms were very balanced, with levels, the

exit component clearly dominated, being approximately three times the size of the entry

17



component.

Moreover, we see that log distortions can lead to a flip of the sign of productivity

components, i.e., turning a genuinely positive value into a negative value and vice versa.

Over the reported period for the average industry, such a sign flip occurred in the entry

component in 2011.

Apart from investigating the development of individual productivity components, de-

composition methods are also frequently used to analyze which components have been the

driving forces behind aggregate productivity growth over a given time span. As Table 1

sets out, such an analysis may be strongly blurred by logs. This is especially visible in the

years 2010 and 2011, when evaluating the relevance of the BFE and the exit component.

Both for levels and for logs, the WFE was the most relevant component for aggregate

growth. However, while levels clearly point toward the BFE as the next most relevant

component, for logs, the impact of exiting firms exceeded that of the BFE.
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Looking at the general distribution of the log distortions, the summary statistics

in Table 2 indicate an average positive tendency in the total distortions in the WFE

(εW ) and the entry component (εN), and a negative tendency in the distortion of the exit

component (εX). The distortions for the BFE (εB) and CFE (εC) paint a rather balanced

picture. Overall, this leads to a slightly positive tendency in the aggregate log distortion

(εA), implying that, on average, logs underestimate aggregate productivity growth.

TABLE 2
Decomposition of the log distortions

All manufacturing Chemicals and chemical products

Mean Sd Min Med Max Mean Sd Min Med Max

WFE εW,appr 2.75 0.40 2.29 2.62 3.62 3.41 1.15 2.11 3.04 6.05
εW,ref -2.54 0.60 -3.83 -2.39 -1.79 -3.10 2.63 -7.89 -3.36 0.76
εW 0.21 0.38 -0.21 0.21 1.08 0.31 1.80 -1.84 -0.36 3.80

BFE εB,appr 0.14 0.18 -0.23 0.14 0.38 0.25 0.35 -0.13 0.21 1.08
εB,ref -0.06 0.03 -0.10 -0.06 -0.03 -0.08 0.07 -0.23 -0.08 0.01
εB,∆Mean -0.07 0.12 -0.26 -0.08 0.20 -0.14 0.16 -0.47 -0.10 0.09
εB 0.00 0.08 -0.13 -0.00 0.16 0.04 0.20 -0.21 0.03 0.49

CFE εC,appr -0.03 0.08 -0.17 0.00 0.05 -0.08 0.46 -1.25 0.02 0.29
εC,ref 0.00 0.09 -0.13 -0.01 0.22 0.03 0.51 -0.40 -0.12 1.31
εC -0.03 0.06 -0.12 -0.03 0.07 -0.05 0.18 -0.29 -0.05 0.21

Entry εN,appr 0.54 0.12 0.36 0.55 0.75 0.61 0.33 0.25 0.57 1.16
εN,ref -0.02 0.04 -0.12 -0.01 0.01 -0.07 0.11 -0.28 -0.02 0.02
εN,∆Mean -0.31 0.20 -0.64 -0.20 -0.13 -0.26 0.16 -0.49 -0.21 -0.08
εN 0.20 0.14 -0.04 0.22 0.39 0.28 0.16 0.08 0.23 0.48

Exit εX,appr -0.61 0.23 -1.06 -0.56 -0.35 -0.72 0.42 -1.50 -0.60 -0.18
εX,ref 0.01 0.03 -0.03 -0.00 0.06 0.07 0.07 -0.01 0.05 0.19
εX,∆Mean 0.38 0.16 0.23 0.39 0.74 0.39 0.25 0.10 0.36 0.86
εX -0.22 0.20 -0.57 -0.27 0.08 -0.26 0.21 -0.73 -0.18 -0.03

Aggr εA,appr 2.78 0.37 2.36 2.63 3.34 3.47 0.66 2.69 3.44 4.61
εA,ref -2.61 0.64 -3.97 -2.45 -1.85 -3.16 2.36 -6.69 -3.57 0.52
εA 0.16 0.53 -0.64 0.12 1.36 0.31 1.95 -2.07 -0.60 3.96

Notes: The table sets out the distribution of annual decomposed log distortions during the 2009-18 period. The left
panel displays results for ’All manufacturing’, and the right panel shows results for the industry of ’Chemicals and
chemical products’ (ISIC 20). The results for ’All manufacturing’ are based on the annual averages of industry-level
results for the 12 industries in our sample. As industry weights, we used labor input measured by hours worked,
averaged over the beginning and ending years of the period in which the respective growth rate was measured. All
log distortions are reported in percentage points.

The decomposition of the log distortions in Table 2 offers an explanation for the

observed tendencies. With respect to the WFE component, the approximation error

(εW,appr) and the reference deviation (εW,ref ) appeared to offset each other to a certain

extent. The approximation error was positive with a mean of 2.75 percentage points and

thereby exceeded the reference deviation, which was consistently negative with a mean

of -2.54 percentage points. When comparing the range and the standard deviation of the

two distortions, it appeared to be the reference deviation causing the fluctuations in the
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aggregate distortion of the WFE (εW ). The negative mean of the reference deviation is

an artifact, as we cannot conclude the sign of the aggregate distortion of εW,ref from the

calculations in Section 3. Only 3 out of the 108 industry-year combinations the average

industry is based on showed a positive reference deviation. A possible explanation of

the negative tendency is that firms with below-average productivity (ϕi1 < Φ1) tend to

increase their productivity, whereas firms with above-average productivity (ϕi1 > Φ1)

tend to decrease their productivity.13 Overall, this contributes to a mostly negative

reference deviation in the WFE (compare Section 3.1).

Regarding the BFE component, the average total log distortion (εB) was approxi-

mately zero. Decomposing this distortion, the reference deviation (εB,ref ) was consis-

tently negative and showed little volatility compared to the other two error terms. The

approximation error (εB,appr) and mean deviation (εB,∆mean) showed years of positive

and negative distortions. On average, the positive tendency in the approximation error

and the negative tendency in the mean deviation can be attributed to the individual

firm/industry characteristics of our sample and may differ for another sample. The nega-

tive median in the mean deviation, for instance, shows that the years in which surviving

firms increased their market share compared to entering and exiting firms outnumber the

years with a decrease in surviving firms’ market share (compare Section 3.2).

The decomposition of the log distortion in the CFE (εC) reveals a slightly negative

tendency in the approximation error (εC,appr), while the reference deviation (εC,ref ) aver-

ages approximately zero. As highlighted in the previous section, the direction of the two

distortions depends on the direction of both the change in market share and the change

in productivity. Due to this variety in influencing factors, neither our theoretical nor our

empirical approach revealed any discernible pattern within the two distortions.

The positive tendency in the log distortion in the entry component (εN) was mainly

caused by the approximation error (εN,appr), which was consistently positive (compare

Section 3.4). Even though the mean deviation (εN,∆mean) was consistently negative,

Table 2 shows that the approximation error was dominant. The reference deviation

13Based on our industry-level results for 2009-18, 57% of firms with below-average productivity in-
creased productivity, and 58% of above-average firms experienced a decrease in productivity (averages
over all industries and years). The shares alone, however, are only an indication because the reference
deviation is also affected by the difference between firm-level productivity and the mean reference, the
magnitude of productivity growth rates, and the input shares of firms in the respective category (see
Section 3).
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(εN,ref ) seemed to be negligible in most years.

The reasoning for the negative tendency of the log distortion in the exit component

(εX) mirrors that of the entry component. The approximation error (εX,appr) was con-

sistently negative, and the mean deviation (εX,∆mean) was consistently positive but, on

average, was surpassed by the approximation error. The reference deviation (εX,ref )

played only a minor role in most years.

4.3 Log distortions in individual industries

We now turn to log distortions when investigating firm-level productivity dynamics within

individual industries. As mentioned above, we applied equations (9) and (10) to each of

the 12 industries listed in Table B1 and subsequently calculated the log-induced dis-

crepancy, resulting in 108 industry-year observations. We treated the large quantity of

results by reporting percentiles in Table 3. Subsequently, we present detailed results for

manufacturers of chemicals and chemical products (ISIC 20). Over the 2009-18 period,

this industry was shaped by strong productivity growth, which highlights the potential

misconceptions induced by logs in productivity decompositions.

TABLE 3
Log distortions in individual industries. N = 108

Min p10 p25 Med p75 p90 Max

εW -1.84 -0.78 -0.29 0.24 0.66 1.46 3.80
εB -0.56 -0.17 -0.07 -0.01 0.08 0.15 0.77
εC -0.85 -0.23 -0.09 -0.03 0.03 0.10 0.49
εN -1.30 0.02 0.08 0.16 0.32 0.52 1.22
εX -2.94 -0.73 -0.36 -0.20 -0.10 -0.04 1.44

εA -3.36 -1.15 -0.43 0.09 0.72 1.34 4.56

Notes: The table sets out the distribution of the annual log distortions occurring in the
decomposition exercises conducted for the 12 industries in our sample in the period 2009-
18. For each component, the number of industry-year combinations is N = 108. The
reported values for the log distortions are in percentage points; p(·) reflect percentiles.

As shown in Table 3, most distortions stayed within the range of approximately ±1

percentage points, although it is possible that log distortions reached or even exceeded

values of 3 percentage points. Analogous to our previous findings, the BFE and the

CFE were, in absolute terms, less affected by log distortions. Nonetheless, even these

two components could be subject to considerable distortions, exceeding our observations

for the average industry. Moreover, for the 108 industry-year combinations within our

sample, we identified 25 combinations with a sign flip either in at least one of the five
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components or in aggregate productivity growth. This result implies that almost one out

of four industry-year combinations was affected by a sign flip. This result underscores

the potential impact of log distortions on individual industries.

Comparing the distortions between different industries, we detected that some indus-

tries were strongly affected by logs, while others were less affected. This means that

when performing a decomposition exercise for an individual industry, the results are not

necessarily strongly distorted by logs. While we argued in Section 3 that log distortions

essentially depend on the features and development of individual firms within a given

industry, the observed differences here raise the question of whether there is a system-

atic pattern or certain characteristics that make an industry more or less prone to log

distortions.

Before we investigate this relationship in Section 5, we turn to the decomposition re-

sults for manufacturers of chemicals and chemical products (Table 1). Overall, the results

are in line with our findings regarding the average industry. However, the magnitude and

fluctuations of the distortions exceeded those for the average industry. The distortions in

aggregate productivity growth ranged from −2.07 to 3.96 percentage points. In relative

terms, the distortion varied between −69% (2012) and 143% (2017). These distortions

were mostly driven by the large deviations in the WFE, which ranged from −47% in 2012

to 191% in 2017. In the BFE component, the span of distortions reached from −94%

in 2017 to 71% in 2011. For the CFE, the largest overestimation amounted to −81% in

2010, while the underestimation was the strongest in 2017, with 28%. Once again, the

relative distortions were most pronounced in the entry and exit components. In the case

of the entry component, the discrepancy was always positive, ranging from 21% in 2011

to 434% in 2018. The distortion in the exit component was consistently negative, ranging

from −1122% in 2017 to −8% in 2011.

It is obvious that the combination of the magnitude and volatility of these log distor-

tions could lead to severe misconceptions concerning productivity growth. This becomes

especially evident in the prevalence of sign flips in aggregate productivity growth (2011

and 2017), the WFE (2017) and the exit component (2013 and 2017), as reported in

Table 1. A look at the BFE component reveals a further example of a misconception.

Considering the development of the BFE between 2011 and 2012, logs created the im-
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pression that the BFE had almost doubled between 2011 and 2012, whereas the results

in levels showed that the BFE had actually decreased.

The described high fluctuations are also reflected in the large standard deviation of

the log distortions in all components, especially in the WFE, BFE, CFE, and aggregate

productivity growth (Table 2. Despite the volatility in distortions, we again detected an

average positive distortion in the WFE (εW ), the entry component (εN), and aggregate

growth (εA), whereas the average distortion in the exit component (εX) was negative.

What was most striking in the results for the chemicals industry in Table 2 was the oc-

currence of positive values in the reference deviation of the WFE (εW,ref ). Recall that the

reference deviation exhibited a strong negative tendency in our sample, for which we of-

fered the opposite direction of the development of below- and above-average productivity

firms as a possible explanation. For the chemicals industry, we detected slightly positive

values for the reference deviation in the years 2015 (0.76) and 2017 (0.064). Again, the

development of firms with below- and above-average productivity may provide one pos-

sible explanation for the reference deviation in these two years. Since both below- and

above-average firms mostly decreased their productivity in 2015 and 2017, the negative

reference deviation of the first group seems to be compensated for by the positive ref-

erence deviation of the second group, yielding an overall positive reference deviation.14

Hence, by revealing how log distortions are driven by the idiosyncratic development of

firms and industries, the chemicals industry offers an instructive example of the difficulty

in predicting the impact of log distortions.

In summary, our results show that logs do induce distortions but not in a systematic

manner. Consequently, the conclusions drawn must lead to fallacies regarding the growth

contribution of the individual productivity components as well as in overall productivity

growth. In our empirical exercise, we found that the use of logs led to an underestimation

of the WFE and the entry component, while the exit component was overestimated.

Overall, this caused an underestimation of total productivity growth. The BFE and

the CFE were less affected; in relative terms, however, they could still be subject to

large distortions. With respect to the decomposed log distortions themselves, we found

14Of firms with an initial productivity above the mean (ϕi1 > Φ1), 64% (2015) and 61% (2017)
decreased their productivity. Of below-average firms (ϕi1 < Φ1), 61% and 55%, respectively, decreased
their productivity.
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that all three identified log distortions (approximation error, reference deviation, mean

deviation) contributed decisively to the discrepancy between level and log components,

albeit with different variations. Despite the numerous parallels between the average

and individual industries, there were differences in the degree to which logs affected

the decomposition results. Although the use of logs may affect some industries more

than others, the magnitude of potential distortions on the individual industry level was

significantly larger than that for the aggregate average, a phenomenon that is well known

as the fallacy of compound (composition): on average, overestimates and underestimates

tend to cancel each other out and thus (partially) mask log-induced inaccuracies at the

industry level.

5 The fallacy in decomposition and industry characteristics

The previous section showed that log-based decompositions embody what we call the

fallacy in decomposition: using logs may lead to either an inaccurate aggregate growth

rate, an inaccurate description of the contribution of the microsources, or both. In this

section, we quantify this fallacy in order to have a general idea of the accuracy of log-

based decompositions. Moreover, we show that log distortions correlate in a systematic

fashion with certain industry characteristics.

To simplify our investigation, we defined three microsources of economic growth: firm

learning, defined as the within firm effect holding the input share constant and allowing

firm efficiency to vary (WFE in equations 9 and 10); the resource reallocation effect,

resulting from changes in the input shares of firms (BCFE = BFE+CFE in equations 9

and 10); and industry churning, defined as the effect of entry into and exit from the

market (NXE = N − X). Table 4 presents the four possible hypothetical cases that

may arise when using logs, as in eq. (10). It is based on the assumption that the correct

decomposition exercise is performed using levels according to eq. (9). In case 1, the log-

based decomposition produces the same results as those obtained from the level-based

decomposition. In case 2, using logs leads to an overestimation of aggregate growth, while

leaving the contribution (expressed in %) of each component unaffected. In case 3, log-

based decomposition generates inaccurate contributions while leaving aggregate growth

unaffected. Case 4 is the worst-case scenario when both types of mismeasurement apply.
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Cases 2 to 4 all represent what we call the fallacy in decomposition when using logs. All

imply an incorrect representation of the sources of aggregate productivity growth.

TABLE 4
Decomposition fallacy: four hypothetical cases

AG WFE BCFE NXE

Results using level-based decomposition

True values 4 2 1.5 0.5
100 50 37.5 12.5

Possible cases using log-based decomposition

Case 1: No error 4 2 1.5 0.5
100 50 37.5 12.5

Case 2: Error in aggregate growth 6 3 2.25 0.75
100 50 37.5 12.5

Case 3: Error in contributions 4 1 2 1
100 25 50 25

Case 4: Both types of errors 6 1.5 3 1.5
100 25 50 25

Notes: Figures in italics represent the respective contributions of the within-firm effect (WFE), the
reallocation effect (BCFE), and the net-entry effect (NXE) in % of aggregate growth (AG). In line
with the definition we gave in the introduction, we consider the level-based decomposition to provide
the ’true values’.

To quantify the fallacy in decomposition, we analyzed whether logs led to an inaccu-

rate description of aggregate growth and of the microfoundations of productivity growth.

To do so, we performed the FHK decomposition using, alternatively, equations (9) and

(10) at the four-digit industry level for each year. We then measured the overall log

distortion εA (εA =
∑

i εi,A) and the log distortions in the individual productivity compo-

nents, i.e., in the within component εW (εW =
∑

i εi,W ), the reallocation component εBC

(εBC =
∑

i εi,B +
∑

i εi,C), and the churning component εNX (εNX =
∑

i εi,N +
∑

i εi,X).

Trimming the bottom and the top 1% of each of these log distortions (εA, εW , εBC , εNX)

yielded 2,805 observations, of which we could retrieve all information.

We infer the fallacy in decomposition by simply counting the frequency of ’inaccurate’

measurements, which we define as the following. First, with respect to aggregate growth,

we arbitrarily qualify a measurement as ’accurate’ if aggregate growth in logs does not

differ from aggregate growth in levels by more than ±α%, where α represents the toler-

ance level below which the log measure is considered accurate: |εA/Φ̂lev| ≤ α%. Second,

we define the measurement of the contribution of components as accurate if no log compo-

nents’ contribution to aggregate growth in logs deviates by more than α percentage points

from the respective counterpart in levels. That is: 4θW ∧4θBC ∧4θNX < α/100, where
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4θZ = Zlev/Φ̂lev − Zlog/Φ̂log and Z = {W ;BC;NX}. We then counted the frequency of

accurate and inaccurate measurements of both aggregate growth and the contribution of

the individual productivity components and built a 2×2 table presenting the frequencies

of the four possible cases displayed in Table 4.

TABLE 5
The fallacy in decomposition – four-digit industry level. N = 2, 805

Contribution of components

Aggregate growth Accurate Inaccurate

α = 5
Accurate 7.9 6.5
Inaccurate 23.7 61.9

α = 10
Accurate 21.6 6.6
Inaccurate 28.2 43.6

α = 20
Accurate 43.3 5.9
Inaccurate 24.8 26.0

Notes: Parameter α denotes the tolerance level that determines whether a measure is accurate
or inaccurate. As for aggregate growth, it represents the magnitude of the aggregate distortion
(εA) relative to the true growth rate (Φ̂lev). A log-based aggregate growth rate is considered

accurate when |εA/Φ̂lev | ≤ α%. The contribution of components is considered accurate if no
log components’ contribution to aggregate growth in logs deviates by more than α percentage
points from the respective level counterpart. That is: 4θW ∧4θBC ∧4θNX < α/100, where

4θZ = Zlev/Φ̂lev − Zlog/Φ̂log and Z = {W ;BC;NX}. The χ2 test reveals that the two
events ’accuracy in aggregate growth using logs’ and ’accuracy of contributions using logs’ are
related at 1% significance level, irrespective of the tolerance level α. Numbers in the table are
in % of industry-year combinations, that is, of N = 2, 805.

Table 5 presents the results for three tolerance levels: α = 5, α = 10, and α = 20.

Starting with a low tolerance level where α = 5, we observed that for only 8% of the

decomposition exercises, the log-based decomposition exercise proved accurate. In the

majority of cases (62%), decomposition using logs yielded an inaccurate aggregate growth

rate and inaccurate contributions of the three components. In almost one case in four,

log-based decomposition yielded inaccurate aggregate growth rates without affecting indi-

vidual contributions. This result implies that, in these cases, the overall mismeasurement

in aggregate growth stemmed from a roughly equal mismeasurement in all growth com-

ponents. Only 6.5% of the decomposition exercises yielded inaccurate contributions with

accurate aggregate growth rates. Altogether, at α = 5, decompositions were inaccurate

in more than 9 out of 10 cases.

Increasing the tolerance level α to 10 and 20 mechanically increased the number of

accurate decomposition exercises to 22% and 43%, respectively. However, this barely

affected the off-diagonal elements, amounting to approximately 3 cases in 10. This re-
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sult implies that increasing the tolerance level barely affects the fact that 30% of such

log-based decompositions produce inaccurate results. The second observation was that

although an increase in the tolerance level increased the frequency of accurate results, a

substantial number of decompositions remained inaccurate: 8 decompositions out of 10

for α = 10 and 6 out of 10 for α = 20. Altogether, the message from Table 5 is that

log-based decompositions generally yield inaccurate results, and accurate decompositions

mostly represent the exception, not the rule.

The consequences of these inaccuracies also affect the validity of studies that investi-

gate the role of industry characteristics in productivity growth. To draw a rough sketch

of the impact of log-induced decomposition fallacies in such ventures, we investigated the

extent to which log-induced distortions were associated with industry characteristics. We

deployed industry characteristics often used in the literature as a candidate explanation

for the observed aggregate productivity growth. These comprehend export intensity (Ex-

pInt: industry sum of export divided by the industry sum of sales), profit rate (PrRate:

industry sum of profit divided by the industry sum of value-added), investment rate (In-

vRate: industry sum of investment divided by the industry sum of value-added), the

number of firms in the four-digit industry (firm count FC, in logs), mean firm size (MFS,

in logs: industry sum of working hours divided by industry number of firms), and in-

dustry concentration as measured by the Herfindahl-Hirschman Index for sales as market

shares (HHI). We did not have any particular prior on whether and how these industry

characteristics were associated with log distortions, and by no means do we intend to

depict causal relationships running from industry characteristics to log distortions. This

advocates the use of an ordinary least squares estimator and the model specification reads

Yst = α + B′Xst + εst (16)

where Y = {εA, εW , εBC , εNX} and X includes the six industry characteristics mentioned

above. Subscripts s and t stand for four-digit sector s at time t. Column vector B

represents the parameter estimates, which in this case, should be interpreted as mere

partial correlation coefficients.

Documenting how industry characteristics are associated with log distortions is not

as straightforward as it may initially seem. Since log distortions can be positive or neg-
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ative, the signs of the parameter estimates in model (16) cannot simply be interpreted

as increasing or decreasing the distortion. To illustrate, imagine that the distortion is

positive (Y > 0), i.e., that logs underestimate the productivity component. Then, a

positive parameter estimate suggests that the given industry characteristic is positively

associated with log distortions. Instead, imagine that the average distortion is negative.

Then, a positive parameter implies that the given industry characteristic moderates log

distortions. To resolve this ambiguity, one could choose to use the absolute value of dis-

tortions as the LHS variable. This, however, excludes the possibility of an asymmetrical

correlation, i.e., that a given industry characteristic only underestimates but does not

overestimate aggregate growth and vice versa. Therefore, we allowed the partial correla-

tions to differ between a positive (Y > 0) and a negative log distortion (Y < 0) and ran

model (16) on the two respective subsamples.

Furthermore, we built our two subsamples exclusively on whether εA was positive

or negative. In our data, the overall number of observations was 2,805, of which 1,619

pertained to an underestimation of aggregate productivity growth (εA > 0), and 1,186

pertained to an overestimation of aggregate productivity growth (εA < 0). We then

regressed εA, εW , εBC and εNX sequentially on the vector of explanatory variables X.

Because εA = εW + εBC + εNX , the reported parameter estimates pertaining to the

dependent variables εW , εBC and εNX all sum to the estimate pertaining to εA: β̂εA =

β̂εW + β̂εBC
+ β̂εNX

. This method allows us to depict where the sources of the overall log

distortion stem from and whether this affects the respective contributions.15

The left (right) panel of Table 6 displays the results for underestimated (overesti-

mated) aggregate growth rates. Focusing first on the left panel and starting with export

intensity, we observed that sectors more committed to international trade were associated

with larger log-induced underestimations (β̂εA>0
εA,ExpInt

= 0.615). This result mainly stems

from a significant underestimation of the within component (β̂εA>0
εW ,ExpInt = 0.872), though

partially compensated by a moderating churning coefficient (β̂εA>0
εNX ,ExpInt

= −0.310). This

result implies that the contribution of firm learning is systematically underestimated in

more open industries. Looking at the right panel, we found no significant overestimation

issue for more open industries, except for the within component (β̂εA<0
εW ,ExpInt = 0.395). Al-

15This also implies that the interpretation of whether the respective industry characteristic exacerbates
or reduces log distortions applies to εA exclusively.
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together, industry openness is associated with a systematic underestimation of aggregate

growth and affects the contributions of the microsources of growth.

Turning to the profit rate, we observed a similar pattern: industries with higher profit

rates were associated with a larger log-induced underestimation (β̂εA>0
εA,P rRate

= 0.912),

while there was no significant association with an overall log-induced overestimation.

In the former case, the distortions stemmed essentially from an underestimation of the

reallocation component (β̂εA>0
εBC ,P rRate

= 0.500); in the latter case, where no significant

association between profit rate and a log-induced overestimation could be identified, the

distortion was caused by a positive association of the within component (β̂εA<0
εBC ,P rRate

=

0.651), which was compensated by the negative association of the churning coefficient

(β̂εA<0
εNX ,P rRate

= −0.726).

Industry concentration is a characteristic that always exacerbates log distortions by

increasing both under- and overestimations (β̂εA>0
εA,HHI

= 3.306 and β̂εA<0
εA,HHI

= 1.785). Such

distortions spread across all components, except for the reallocation and the net entry

distortion component in the case of overestimation. This is a clear indication that highly

concentrated industries are prone to distortions when decomposing aggregate productiv-

ity growth based on log-transformed measures of efficiency. This not only affects the

estimated productivity growth but also casts doubt on the relevance of the contribution

TABLE 6
Industry characteristics and the magnitude of log distortions using logs

Log-induced underestimation (εA > 0) Log-induced overestimation (εA < 0)

εA εW εBC εNX εA εW εBC εNX

ExpInt 0.615** 0.872*** 0.053 -0.310* 0.114 0.395* -0.091 -0.190
(0.262) (0.249) (0.078) (0.175) (0.254) (0.228) (0.082) (0.211)

PrRate 0.912** 0.279 0.500*** 0.134 -0.041 0.651** 0.033 -0.726**
(0.379) (0.361) (0.113) (0.253) (0.366) (0.328) (0.118) (0.305)

HHI 3.306*** 1.828*** 0.308* 1.171*** 1.785*** 1.786*** 0.039 -0.041
(0.608) (0.580) (0.181) (0.406) (0.554) (0.497) (0.179) (0.461)

InvRate 0.005 -0.003 0.019 -0.011 -0.110* -0.095* 0.003 -0.018
(0.060) (0.058) (0.018) (0.040) (0.062) (0.056) (0.020) (0.052)

FC -0.271*** -0.250*** 0.026* -0.046 -0.307*** -0.143*** -0.007 -0.158***
(0.047) (0.044) (0.014) (0.031) (0.043) (0.039) (0.014) (0.036)

MFS -0.397*** -0.257*** -0.014 -0.126** -0.193*** -0.036 -0.018 -0.139**
(0.073) (0.070) (0.022) (0.049) (0.066) (0.059) (0.021) (0.055)

Observations 1,619 1,619 1,619 1,619 1,186 1,186 1,186 1,186
R-squared 0.110 0.083 0.017 0.014 0.117 0.093 0.002 0.028

Notes: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Constant not reported. The left panel shows log-induced
underestimations (εA > 0), and the right panel depicts overestimations (εA < 0). The dependent variable is the absolute value
of the difference between levels and logs for the individual components: Aggregate (εA); Within (εW ); Reallocation (εBC); and
Churning (εNX). A positive (resp. negative) sign for the parameter estimate indicates that a given industry characteristics is
associated with a larger (resp. smaller) under- or overestimation using logs.
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of each component.

Looking at the investment rate, industries with a high investment rate appeared not

to correlate with log distortions (apart from a negligible but still significant distortion-

reducing firm learning effect in the case of overestimation), neither concerning the ag-

gregate growth rate nor by modifying the respective contributions of the microsources of

growth.

The two key variables that significantly reduced log distortions, by reducing both

under- and overestimations, were the number of firms and the average size of firms.

Regarding the firm count, this goes through a reduction in the distortions in the within

and churning components, εW and εNX . For the reallocation component, in contrast, a

high number of firms was associated with a larger underestimation (β̂εA>0
εBC ,FC

= 0.026). In

fact, increasing the number of firms in an industry is tantamount to increasing the level

of competition. Increased competition should lead to a reduction in profit rates, lower

market shares and lower price-cost margins. This, in turn, should translate into less

right-skewed distributions in sales and size, with the presence of dominant firms being

undermined. Concerning average firm size, the decrease in distortions stems from a

reduction in the churning component across both over- and underestimations, supported

by a distortion-reducing firm-learning component. Our interpretation is that a higher

mean firm size is a proxy for entry barriers. In turn, fewer movements in firm entry and

exit reduce distortions due to industry churning.

Altogether, the results unambiguously show that variables proxying for lack of compe-

tition, such as industry concentration or profit rate, and for the openness of the industry,

such as export intensity, are associated with log distortions. Conversely, more competitive

industries are associated with lower log distortions.

6 Conclusion

The use of logs in productivity decomposition induces fallacious conclusions: using logs

may lead to either inaccurate aggregate productivity growth, an inaccurate description

of the contribution of the productivity components, or both. As we show in our paper,

this fallacy is due to three log distortions: (i) the log approximation error, as a conse-

quence of the logarithm’s concavity; (ii) the reference deviation, arising from a different
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reference assumption implicit in log differences; and (iii), the mean deviation, caused by

the difference in the deployed benchmark productivity.

Carried out on the basis of the FHK decomposition method, we calculated the re-

spective distortions analytically and showed their magnitude empirically using firm-level

data of the French manufacturing sector during 2009-18. The results suggest that the

use of logs can lead to substantial misconceptions regarding productivity developments.

Log-induced distortions appear to be unsystematic, which implies that each productivity

component as well as aggregate productivity growth may be either over- or underesti-

mated. This impairs the comparison between log and level results as well as the com-

parison between log results themselves. Overall, however, our empirical exercise suggests

that logs underestimate the growth contribution stemming from both the within-firm

and the entry component, while overestimating the contribution of the exit component;

conversely, the between- and cross-firm components appear to be less affected by the use

of logs. In sum, these tendencies caused and underestimation of aggregate productivity

growth in our study.

Performing decompositions at a fine-grained industry level has allowed us to quantify

this fallacy in log-based decompositions. As the results show, even with reasonably high

levels of tolerance, the odds are high that a log-based decomposition will yield mislead-

ing results. With a simple study on the association of industry characteristics with log

distortions, we further show that the magnitude of log distortions is substantial for infer-

ential productivity analyses: on the aggregate level as well as on the level of productivity

components, log distortions correlate significantly with industry characteristics. Conse-

quently, the use of logs will inevitably induce severe endogeneity problems in inferential

regression analyses when using log-transformed productivity components.
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TABLE A1
Application of levels and logs as a labor productivity measure in past decomposition studies

Contribution Method Data Levels/Logs

Griliches and Regev (1995) GR Israel Central Bureau of Statistics (CBS)
- Industrial Surveys

Levels

Baily et al. (1996) BHC (modified) US Census - Manufacturing Sector Levels
Davis and Haltiwanger (1999) FHK US Census - Manufacturing Sector Logs
Baily et al. (2001) GR (modified) US Census - Annual Survey of Man-

ufactures of the Longitudinal Research
Database

Levels

Foster et al. (2001) FHK US Census - Manufacturing and Services
Sector

Logs

Scarpetta et al. (2002) GR, FHK Firm-level data from ten OECD countries:
United States, Germany, France, Italy,
United Kingdom, Canada, Denmark, Fin-
land, Netherlands, and Portugal

Logs

Bernard et al. (2003) FHK Simulated data - Based on parameters
from US Manufacturing

Levels

Disney et al. (2003) BHC, GR, FHK UK Census of Production - Annual Census
of Production Respondents Database

Logs

Van Biesebroeck (2003) BHC (modified) US - Automobile Assembly Plants and
Longitudinal Research Database

Logs

Bartelsman et al. (2004) GR, FHK Firm-level data from 24 countries Logs
Van Biesebroeck (2005) BHC (modified) Firm-level data from nine African coun-

tries: Based on surveys in the Manufac-
turing Sector

Logs

Foster et al. (2006) FHK US Census - Census of Retail Trade Logs
Hakkala (2006) GR, FHK Statistics Sweden - Sample Manufacturing

Sector
Levels

Lentz and Mortensen (2008) FHK Danish Business Statistics Register - An-
nual panel of privately owned firms

Levels

Bartelsman et al. (2009) GR, FHK Firm-level data from fourteen coun-
tries: Estonia, Hungary, Latvia, Romania,
Slovenia, Argentina, Brazil, Chile, Colom-
bia, Mexico, Venezuela, Indonesia, South
Korea, and Taiwan [China]

Logs

Haskel and Sadun (2009) FHK UK Annual Respondents Database (ARD)
- Retail Sector

Logs

Maliranta and Määttänen (2015) OP (augmented) Statistics Finland - Structural Business
Statistics Data

Logs

Melitz and Polanec (2015) DOPD Slovenian AJPES - Slovenian Manufactur-
ing Sector

Logs, (Levels)

Decker et al. (2017) DOPD, FHK US Census - Revenue-enhanced Longitu-
dinal Business Database (ReLBD)

Logs

Acemoglu et al. (2018) FHK US Census - Manufacturing Sector Levels
Alon et al. (2018) DOPD US Census - Revenue-enhanced Longitu-

dinal Business Database (ReLBD)
Logs

Brown et al. (2018) DOPD Mexico - Annual Industrial Survey (EIA)
Columbia - Manufacturing Survey (EAM)
Chile - National Annual Manufacturing
Survey (ENIA)
Peru - Annual Economic Survey (EEA)

Levels, (Logs)

Dias and Marques (2021b) DOPD/FHK (modified) Statistics Portugal - Portuguese nonfinan-
cial firms

Logs

Notes: This table provides an overview of recent decomposition literature and documents the measure deployed for representing
firm-level productivity (levels and/or logs). BHC: Baily, Hulten and Campbell (1992), GR: Griliches and Regev (1995), FHK: Foster,
Haltiwanger and Krizan (2001), DOPD: ’Dynamic Olley-Pakes Decomposition’ by Melitz and Polanec (2015); ’Levels’ and ’Logs’ in
parentheses means that some results were reported in these measures as a supplement to the mainly applied measure.
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Appendix B. Industry classification

TABLE B1
A38 and ISIC industry classification in manufacturing

A38 ISIC Description

CA 10-12 Manufacture of food products, beverages and tobacco products
CB 13-15 Manufacture of textiles, wearing apparel, leather and related products
CC 16-18 Manufacture of wood and paper products; printing and reproduction of recorded media
CD 19 Manufacture of coke and refined petroleum products
CE 20 Manufacture of chemicals and chemical products
CF 21 Manufacture of basic pharmaceutical products and pharmaceutical preparations
CG 22-23 Manufacture of rubber and plastics products, and other non-metallic mineral products
CH 24-25 Manufacture of basic metals and fabricated metal products, except machinery and equipment
CI 26 Manufacture of computer, electronic and optical products
CJ 27 Manufacture of electrical equipment
CK 28 Manufacture of machinery and equipment n.e.c.
CL 29-30 Manufacture of transport equipment
CM 31-33 Other manufacturing; repair and installation of machinery and equipment

Notes: The table sets out the intermediate SNA/ISIC aggregation A38, which aggregates similar ISIC two-digit divisions to
13 different categories. It is the industry classification deployed in the main text, excluding the industry of coke and refined
petroleum products (ISIC 19).

Appendix C. Summary statistics

TABLE C1
Summary statistics for French manufacturing 2009-18

Obs Mean Sd Min Med Max

All manufacturing

Value-Added 260,674 5,951,312 4, 81 · 107 1,405.84 1,309,477 6, 04 · 109

Employees (FTE) 260,674 77.14 519.53 5 23 68326.5
Working Hours 260,674 117,363 791,967.40 7,177.97 35,211 1, 04 · 108

Value-Added/Working Hours 260,674 40.64 20.44 0.09 36.30 724.62

Manufacturing of chemicals and chemical products (A38 CE / ISIC 20)

Value-Added 8,252 1, 47 · 107 4, 42 · 107 65,269.38 3,302,234 8, 96 · 108

Employees (FTE) 8,252 139.16 422.65 5 40 8447.5
Working Hours 8,252 208,831.10 634,371 7,455.88 59,790.08 1, 26 · 107

Value-Added/Working Hours 8,252 61.01 38.49 2.89 52.35 486.37

Notes: The numbers for ’All manufacturing’ include firms of all manufacturing industries with the exception of the coke
and refined petroleum products industry (ISIC 19). The number of employees is documented in the form of full-time
equivalents (FTE). The statistics are reported for the cleaned sample. Value-Added is reported in deflated e .
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Appendix D. Log distortions in related decomposition methods

The aim of this section is to show that the general patterns we have identified for the FHK

decomposition also hold for the related methods by Griliches and Regev (1995) (GR) and

by Melitz and Polanec (2015) (DOPD: ’Dynamic Olley-Pakes Decomposition’), which

represent two commonly used alternatives. In addition to the similarities, we will note

important differences in the DOPD method.

Like the FHK method, the method by Griliches and Regev (1995) is a longitudinal

approach. The GR method decomposes productivity using average weights. For sim-

plicity, we express the decomposition in a somewhat ’neutral’ form, not differentiating

between levels and logs in the denotation, as done, for instance, by Baily et al. (2001).

Φ̂GR =
∑
i∈S

si · 4ϕi︸ ︷︷ ︸
WFEi

+
∑
i∈S

4si · (ϕi − Φ)︸ ︷︷ ︸
BFEi

+
∑
i∈N

si2 · (ϕi2 − Φ)︸ ︷︷ ︸
Ni

+
∑
i∈X

si1 · (Φ− ϕi1)︸ ︷︷ ︸
Xi

(D1)

As with the FHK method, when using levels, the decomposition formula above would

require a reference productivity for calculating growth rates. Since Griliches and Regev

use average weights, the choice of Φ may be the most intuitive one in this case (Van

Biesebroeck, 2008). However, in line with Baily et al. (2001), who deployed a modified

version of the GR method, we use Φ1 as a reference productivity. This method also

facilitates a comparison between our results for the GR and the FHK method. By using

averages for firm-level productivity (ϕi) and market shares (si), there is no interaction

term or cross-firm effect, as in the FHK method. A further important difference from

the FHK method is the choice of benchmark productivity, which measures the impact of

market share reallocations and entering and exiting firms. Instead of the initial aggregate

productivity, Φ1, the GR method deploys the average between the aggregates in the

starting and ending period, Φ.

The log distortions for the weighted average industry for the 2009-18 period are shown

in Table D1. The results are similar to those presented for the FHK method. The distor-

tions in aggregate productivity growth ranged from −0.64 to 1.36 percentage points and
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TABLE D1
Decomposition of the log distortions in the GR decomposition

εW εB εX εN εA

2010 -0.22 0.00 -0.59 0.17 -0.64
2011 -0.04 0.11 -0.36 0.17 -0.12
2012 0.21 -0.15 -0.03 -0.06 -0.03
2013 0.02 0.01 -0.29 0.38 0.12
2014 0.21 -0.01 -0.26 0.22 0.16
2015 0.35 -0.01 -0.30 0.25 0.28
2016 0.23 -0.06 -0.18 0.38 0.37
2017 1.10 0.01 0.02 0.22 1.36
2018 -0.10 -0.05 0.07 0.06 -0.02

Mean 0.19 -0.02 -0.21 0.20 0.16
SD 0.39 0.07 0.21 0.14 0.53
Median 0.21 -0.01 -0.26 0.22 0.12

Notes: The table sets out the annual decomposed log dis-
tortions during the 2009-18 period for the entire man-
ufacturing sector, using the decomposition method by
Griliches and Regev (1995) (GR). The results are based
on the annual averages of the industry-level results for the
12 industries in our sample. As industry weights, we used
labor input in the form of hours worked, averaged over
the beginning and ending years of the period in which the
respective growth rate was measured. All reported values
for the log distortions are in percentage points.

were mostly driven by the distortions in the WFE. The exit and entry components also

showed considerable absolute distortions, while the BFE was less affected. Analogous

to the results for the FHK method, on average, logs underestimated the WFE and the

entry component, but they overestimated the exit component. The BFE showed a minor

negative tendency. Taken together, this induces, on average, a positive log distortion in

aggregate productivity growth.

The decomposition method by Melitz and Polanec (2015) is based on the cross-

sectional approach proposed by Olley and Pakes (1996). Instead of tracking individual

firms over time, the DOPD method decomposes aggregate productivity in two different

periods and subsequently contrasts the individual components. Apart from the entry and

exit components, they decompose the contribution of incumbents into a within-firm and

a between-firm effect.

Φ̂DOPD = 4ϕS︸︷︷︸
WFE

+4covS(ϕit, sit)︸ ︷︷ ︸
BFE

+ sN2 · (ΦN2 − ΦS2)︸ ︷︷ ︸
N

+ sX1 · (ΦS1 − ΦX1)︸ ︷︷ ︸
X

(D2)
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In the DOPD decomposition, the WFE is represented by the development of the

unweighted average of firm-level productivity in surviving firms. The BFE is expressed

by the change in the covariance between the firm-level productivity of incumbents and

their market shares. The last two terms represent the contribution of entering and exiting

firms relative to the aggregate productivity of surviving firms at the respective point in

time.

When representing firm-level productivity in logs, the above equation can simply be

used in the above form. For levels, however, the equation requires a slight modification

to ensure scale invariance in the covariance term. Melitz and Polanec (2015) provide a

level representation of the decomposition method in the appendix of their paper. Note

that they deployed Φ as a reference productivity. For the results presented in Table D2,

we followed their suggested approach.

TABLE D2
Decomposition of the log distortions in the DOPD decomposition

εW εB εX εN εA

2010 -0.42 -0.03 -0.62 0.20 -0.87
2011 -0.22 0.10 -0.40 0.19 -0.33
2012 -0.02 -0.05 0.01 -0.19 -0.25
2013 0.08 -0.15 -0.29 0.39 0.02
2014 -0.01 0.08 -0.29 0.23 0.01
2015 0.27 0.03 -0.32 0.25 0.22
2016 0.63 -0.62 -0.19 0.39 0.21
2017 0.73 0.23 -0.05 0.22 1.14
2018 0.33 -0.62 0.11 0.04 -0.14

Mean 0.15 -0.11 -0.23 0.19 0.00
SD 0.38 0.31 0.22 0.18 0.54
Median 0.08 -0.03 -0.29 0.22 0.01

Notes: The table sets out the annual decomposed log dis-
tortions during the 2009-18 period for the entire manufac-
turing sector, using the decomposition method by Melitz
and Polanec (2015) (DOPD). The results are based on
the annual averages of the industry-level results for the
12 industries in our sample. As industry weights, we used
labor input in the form of hours worked, averaged over
the beginning and ending years of the period in which the
respective growth rate was measured. All reported values
for the log distortions are in percentage points.

The distortions in aggregate productivity growth ranged from −0.87 to 1.14 percent-

age points. What stands out as a striking difference between the DOPD method and the

FHK and GR methods, is that the BFE is subject to significantly stronger distortions,

ranging from −0.62 to 0.23 percentage points with a negative mean. This result implies

that, in contrast to the other two methods, whose reallocation component was, in abso-

lute terms, affected only to a limited extent, each of the four productivity components in
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the DOPD decomposition may be considerably distorted by the use of logs. Moreover,

the log distortions in the BFE show, on average, a clearly negative tendency, implying

that logs tend to overestimate the BFE component in the DOPD method. This negative

tendency also appears to balance out the distortion in aggregate growth, resulting in

an average distortion of approximately zero. Hence, for the DOPD method, our sample

shows that calculations based on logs are, on average, on spot with respect to aggregate

growth.
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